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We present a method for calculating the thermodynamic and structural properties of a polydisperse liquid by
means of a thermodynamic perturbation theory: the optimized random phase approxi(@RiBa). The
approach is an extension of a method proposed recently by one of us for an integral equation apjfibgsion
Rev. E54, 4411(1996]. The method is based on expansions ofsaliependent functions in the orthogonal
polynomialsp;(o) associated with the weight functidg (o), whereo is a random variabléin our case the
size of the particlgswith distributionfs (o). As in the one-component or generdlcomponent case, one can
show that the solution of the ORPA is equivalent to the minimization of a suitably chosen functional with
respect to variations of the direct correlation functions. To illustrate the method, we study a polydisperse
system of square-well particles; extension to other hard-core or soft-core systems is straightforward.
[S1063-651%99)06806-3

PACS numbsgfs): 82.70.Dd, 02.70-c, 61.20.Gy, 61.25.Em

[. INTRODUCTION the late 197092,3], when a model of polydisperse hard
spheres was investigated within the Percus-Yevick approxi-
Colloidal suspensions consist of mesoscopic particlesnation. In later years the concept of polydispersity was cast
(with mean diameters typically from Zm to 1 nnj that are  in a mathematically rigorous form by Salacuse and $#ll
dispersed in a suspending microscopic fluid. On the onand by Briano and Glandg]. In these formulationsy is the
hand, the fact that such colloids are practically ubiquitous irrealization of some random variak¥e distributed according
our everyday livegranging from industrial products such as to a probability distributiorfs (), which replaces the finite
paints, glues, or lubricants to basics such as foods or phaset of concentrations of the discrete components of a mix-
maceuticalsis one reason why increasing attention has beenure. Meanwhile, the formalism has been extended system-
dedicated to these system&or an overview see, for in- atically to more refined and more sophisticated hard-core
stance, Ref{1].) On the other hand, for a liquid state physi- model system§6—9]. The first step toward numerically solv-
cist such systems are very attractive in that they represeimg such generali.e., continuous systems was carried out
mesoscopic realizations of simple atomic liquids. Surprisingoy D’Aguanno and Kleir{10], who applied well-known in-
analogies between the statistical behavior of such systentegral equation approaches of liquid state theory to the poly-
and that of simple atomic fluids can be observed, and indisperse case. This was achieved by replacing the continuous
some cases analogous experiments can be carried out mugistributionfs (o) with a histogram for a finite set af well-
more easily for colloids than for atomic systems. To describehosen diameters, thus mapping the polydisperse system
these suspensions, one usually integrates(@uteast con- back onto am-component mixture.
ceptually the molecular degrees of freedom of the suspend- Recently this approach was modified by one of us by
ing fluid, and employs effective potentials acting directly be-joining the orthogonal polynomial expansion technique with
tween the mesoscopic particles that are rather simple: a harshassical liquid state integral equation thediyi]. In this
repulsion at short distances followed by attraction at largeprocedure, allr-dependent functionén particular, the cor-
distances. In some cases, these interactions can even be tahation functiongare expanded in terms of orthogonal poly-
lored by suitable production techniques, while in atomic lig-nomials p;(o) associated with the weight functiofy (o).
uids one is simply stuck with the interaction dictated by theThis expansion technique avoids the rapid increase in com-
electronic structure. putational cost with number of components in the
These appealing features of colloidal suspensions arB’Aguanno-Klein mixtures method, while fully retaining the
countered by(at least one major drawback which makes advantages and numerical accuracy of Gaussian quadrature
their theoretical investigation rather complicated: due to theibased on the weight functidi (o). The same technique can
production process the colloidal particles are inherently polyfurther be applied to a much wider range of problems dealing
disperse in sizéand consequently also in their interaction with internal and external degrees of freedom in fluid sys-
A polydisperse liquid can be considered as a mixture with anems[12,13].
infinite number of components, characterized, for instance, Inthe present work, we have merged the orthogonal poly-
by sizeo, which is now a continuous rather than a discretenomial expansion method with a thermodynamic perturba-
variable. The first attempts to treat such systems date back ton theory, the optimized random phase approximation
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(ORPA). The ORPA was introduced in the 197[04,15, Il. THEORY
and turned out to be a very successful liquid state theory,
favored by practitioners over a considerable period of time
unti—because of new, more efficient numerical We first consider arv-component mixture of simple lig-
algorithms—it was overtaken by integral equations in theuids that is characterized by a temperatlifgs=(kT) ~*1,
1980s. In the ORPA, the pair potential is split into a harshly® Number density, and a set of concentrations, and de-
repulsive reference tentihe optimum choice is of course a [In€ the partial number densitigg=pc;. We furthermore

hard sphere interactipnand a perturbation term; the assume that every SPECIES char_acterlzed by some diam-
Ornstein-Zernike equations are then solved along with gerai, an.d that the pair potgntld)(r;ai '(.Ti) acting be-
mean-spherical-type closure relation which guarantees in a&\_/v?gn parftlcles of sp;)cmsgndl can ze split upblnFo are
dition that the pair distribution function vanishes in the re—f’bu S'Ye re er.ence parbo(r;oy,0) and a perturbation part
gion that is not accessible due to the strong repul§icaore 1(rioi,0):

region”). It can be shown that the solution of the resulting D(r;07,09) =DPo(r; 07,07+ Py(r;07,07). (1)
integral equation is equivalent to the minimization problem

of a suitably chosen functional of the direct correlation func-We can assume that the reference potentials are hard sphere
tion. This functional makes the ORPA very attractive, sincepotentials, characterized by an additive set of diameters

it is sometimes more conveniertand numerically more and put
stablg to solve the minimization problem than to solve an

integral equation. Thermodynamic and structural properties

are c_alculat(_ad via perturbation expressions. In recent years—fthe ®o(r;01,0y) are soft potentials, we can replace them
due in particular to the work of Pastore and co-workerspy suitably chosen hard sphere potentials using a straightfor-
[16,17—the ORPA has been rediscovered: new numericajyard generalization of the Barker-Hendersfl] or the
tools and the rapid development of computers have broughlveeks-Chandler-Anderséh5,22 prescription for the deter-
this liquid state method back into the race. Preliminary cal-mination of the diameters; of course, in such a case the cross
culations for simple square-well systems have shown that iterms in the interactions must be forced to be additive. We
some cases the ORPA can in fact be applied over a largerill characterize our systems via the packing fractipnde-
range of system parameters than integral equation agined as
proacheq18]. In addition, the ORPA shows a remarkable
degree of thermodynamic consistensithout the necessity
of introducing an additional parameter, as required in appli-
cations of parametrized integral equation theories that en-
force some thermodynamic consistency. In our approach, we exploit the fact that the thermodynamic

We demonstrate here that one can merge the ORPA arghd structural properties of the hard sphere reference poten-
the method of orthogonal polynomial expansions. As dtial are well known, either as thghermodynamically incon-
sample application, we have chosen a polydisperse system sisten} analytic Percus-Yevick solutiofi23] or as semi-
square-well molecules. This is a rather simple system whiclempirical Verlet-Weis-type extension24—-2¢ which very
nevertheless captures all the essential features of a typicatcurately parametrize computer experiments.
potential of atomic liquids or colloidal suspensions. In this
formulation, the potential parameters of the polydisperse sys- B. Optimized random phase approximation
tem (hard-core diametes, well width \, and well depthe) for the A-component case
can be varied independently; i.e., they can be distributed ac-
cording to three independent distribution functiohi o),
fa(o), andfe(o). N

Finally we note some very recent work on polydisperse h(r;o;,0))=c(r;o;,0))+ > pkf dr’ c(r';oy, o)
system where contributions of higher-order moments of the k=1
distribution function to the free energy are systematically Xh(|r=r'|;0%,07) )
taken into accounit19,20. At present it is not clear if some P
relation between this moment-expansion and our expansioghere c(r; o ,oj) and h(r;o;,a;) are the direct and total
in orthogonal polynomials can be established; this might beorrelation functions, respectively. We follow Blum and

A. System

oij=3(oi+ o). 2

ol 3

N
n= ;1 pio?. ©)

We start from the Ornstein-ZerniK©Zz) equation

part of future work. Stell [3] and introduce

The paper is organized as follows. In Sec. I, we present
the basic concept of the ORPA for the case of a discrete H(r;oq,0))=\pipjh(r;oi, o)),
N-component systertwith finite V) as well as for the case (5)
of a continuous polydisperse system, introducing orthogonal C(r;oi,0))= x/pipjc(r;a'i ,Tp).

polynomial expansions for the latter. General expressions for

the structural and thermodynamic properties are given herd-ourier transforms are denoted by a tilde; introducing matrix
In Sec. Ill, we apply this approach to a polydisperse squarenotation,[C(r) ];;=C(r;o;,0;), etc., we arrive at the fol-
well liquid, and discuss the influence of the numerical pa-lowing OZ matrix equation irg space:

rameters and of the size distribution functions. The paper ~ _ o

concludes with a summary of our findings in Sec. IV. H(g)=C(q)+C(gq)H(q). (6)
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Just as for the potentials, we now split the correlation func-This means that the search for the minimum of the functional
tionsH(r) andC(r) into reference and perturbation parts: F[C] with respect to variations of th€,(r;o;,0;) inside
the core region is equivalent to satisfying the core condition
C(r)=Co(r)+Cy(r), H(r)=Ho(r)+Hy(r). (7)  for the PDF’s. By extending a proof by Pastaiteal. [16] to
. . . the A-component case, one may show that, if such a mini-
Slnce{_C(r),H(r)} and{Co(r),Ho(r)} satisfy OZ relations, mum has been found, it is the only one and the physically
we arrive—after some matrix algebra—at the so-called re-
. . sound one.
sidual OZ relation

Hl(q)={[So(q)]7l—61((1)}7161((1)50((1), (8) C. Optimized random-.phase approximation
for the polydisperse case

where we have introduced the matrix of structure factors of 14 formalism developed above can now be easily gener-

the reference system, alized to the polydisperse case. The concept of polydisperse

_1+H 9 systems was introduced in the late 1970s for simple hard
So(@)= o(d), ©) sphereq3,27], and extended in subsequent years to more
with 1 the unit matrix. complex interaction model¢see the Introduction of Ref.
To solve the OZ equations a closure relation is needed. Ihll])' Later, the treatment of polydispersity was cast in a
rigorous form by Salacuse and Sté4] and Briano and

the random phase approximatigRPA), one assumes that . . X
the long-range behavior of the direct correlation functionsC/andt[S]- In a polydisperse systefwhich may be viewed

(DCF’s) holds forall distances outside the core region, as a mixture with an infinite number of compongntte
particles are characterized by a parametewhich is the

c(r;oi,0))=Co(r;oy,0)) — BP(r;0i,09), (10  realization of a random variabl®. This random variable is
. distributed according to some probability distributiby( o),
or equivalently, which now replaces the set of concentrations of the compo-

nents. In our caséas in many other applicatiopsthe ran-
dom variable is of course the diameter of the particles. In the
Jollowing we will setfs(o)=f(o) for convenience and re-
introduce the index %" later.

The OZ equation now reads

Cy(r;o,0)=—BPy(r;0y,0)), r>o;. (1)

Due to the infinite repulsion of the reference potential, ther
is some ambiguity for the definition &b,(r;o;,0;) inside
the core. One possibility is to assume that the perturbation
potential is continued steadily. Solution of the RPA closure o
along with the OZ relation then leads, however, to pair dis- h(r1220'1,0'2)=C(I’12;0'1,0'2)+pf dosf(os3)
tribution functions [PDF’s, g(r;o;,0)=h(r;oi,07)+1] 0
that violate the core conditions, i.e.,

Xf drac(riz;oy,03)N(rgz;03,02),

(16)

g(r;oi,0))#0 for r<aj. (12

The optimized version of the RPA, ORPA, corrects this de-
ficiency by modifyingc,(r; oy ,07) inside the core, where the anq the packing fractiom is given by the third moment of
perturbation potentigland hence the perturbation part of the e distributionf (o),

DCF'’s) can be changed arbitrarily. The modifications are

then done in such a way as to guarantee that the core condi- T T —

tion for the PDF’s is fulfilled. Hence the ORPA closure re- n= gpfo do f(o)o®= ngs- 17)
lations now read

Note that in some papers a slightly different definition of the

C(ro1,0))= = BPuy(r;0i,09), >0 packing fraction is used, e.§4],

(13
g(r;oi,0))=0, r<oy;. Cm
— 3 —
Similarly to the one-component case, one can show that mebo 07 fo dof(o)o. (18
the solution of the integral equation along with the ORPA
closure is equivalent to minimization of a functiorfgIC] of Instead of evaluating integrals over the distribution func-
the direct correlation functions. Defining tion f(o) by Gaussian quadrature, as proposed by

D’Aguanno and Kleirf10], we expand alb-dependent func-

1 ~ tions in terms of the orthonormal polynomialg (o), i
HCl= 3f dg {TrC(a)So(a)] =0,12. .., associated with the distribution functidi{c),
2(2m) . : .
which now plays the role of a weight function,
+In[de(1—Cy(a)Sp(a)) ]}, (14 .
where Tr denotes the trace of a matrix, one can show that fo do f(o)pi(e)pj(o) = (19
0 C] 1 For some choices dof(o), such as the Schukor I') distri-

Hl(r;(Ti,O'j) for r<0’ij. (15)

5cl(r;al,a,-):_§ bution used belowp;(o) are known explicitly. In other
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cases, these polynomials must be constructed; this can higde) and collecting them as matric€&andH, we find that
done using the Gram-Schmidt algorithm, starting fromin terms of these coefficient functions the OZ equatit)s

Po(o)=1.
Given now someo-dependent functions(r;o) and
y(r;oq,0,), their expansions read

x(r;a>:j§0 X, (1)pj(a),

. (20
Y(r§01,02)=ij§=:0 Yij(r)pi(a1)pj(os),
where the coefficients are given by
Xi(r)=J:daf(cr)x(r;cr)pi(cr), (21)

yij<r>=f:doldaz Hof(@)y(Fiay, oo py(op;(o2).
22

now read

H(a)=C(q)+pH(q)C(q). (27)

Here,C andH are nXn matrices, where is the (chosen
parameter of discretization; the actual valuesricequired

for a sufficient level of accuracy are discussed below. In a
similar way, we can decompose the static structure factors
S(q;0i,0;) of the reference system in terms of the orthonor-
mal polynomials, leading to a matr&,(q) that is related to

the hard sphere PDF matrfty(q) via

So(@)=1+pHo(q). (28)

Developing the concept of the ORPA along lines parallel
to those outlined above for th&-component case, we find
that the residual OZ equatig®) now reads

Hy(a)={[So(a)] *—pCi(a)} *C1(a)Sp(a). (29)

Again, it can be shown that the solution of the residual OZ

Of course, in numerical applications these infinite sums ande|ation along with the ORPA closure are equivalent to mini-
integrations must be converted to finite versions. For the INiizing a suitably chosen functional. In terms of andS,
tegrations, it is most convenient to use Gaussian quadraturgatrices, the functional and its functional derivative with

Let oy, (k=1,...,n) be then roots of p,(o), andz(o)
some arbitraryor-dependent function; then

f:da' f(a)z(a)~gl WiZ(Okn), (23

where the weightsv, are given by

1
e e (24)

2 pjz(o'k;n)
j=0

With these ingredients, we obtain the numeri¢approxi-
mate versions of the equations above:

n—-1

x(r;ak;nwjgo X (N)Pj(Ticn),

. (25
y(r;ak;niam;n)~i§0 yij(r)pi(ak;n)pj(am;n)l
where the coefficients are given by
n
Xi“)”gg WiX(T;090) Pi(Oin) s
(26)

n

yij(r)%kmzzl WkaY(r;o'k;n vo'm;n)pi(o'k;n)pj(o'm;n)-

respect to the coefficients, ;(r) are, respectively,

1 o
A= 5o [ a0 (rpeu@sy@
+In[de(1- pCy(q)So(a))]} (30)
and
SFIC] 1
mz—ipzhl;ij(r) for I'<O'ij. (32

D. Thermodynamics

Once the structure is found, the thermodynamic properties
can easily be calculated. In the following, the expressions
presented in Ref.11] are complemented by some additional
relations which can be derived specifically in the framework
of the ORPA.

For the (exces} internal energyU®, the virial pressure
Pv, and the isothermal compressibilig;, we thus obtain

Uex e}
BN =2mppS | drr2dy (g, (@2

pv 2 o dd ., (r
Bp =:|.—§7T,3p§‘I fo drr3 (;r( )glm(r)a (33
1 aBP° -
PkBTXT:( p ) 1Pl a=0), (39
T

Denoting the expansion coefficients for the orthogonal polyawhereN is the total number of particles of all species. Fur-
nomial expansions of the direct and total correlation func-ther, within the ORPA and using the coupling constant for-

tions c(r;oi,0) andh(r;o,0;) by ¢;;(r) andh;(r) (and

malism[11], for the Helmholtz free energé one can derive

similarly for their Fourier transforms, with an additional the expression
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TABLE |. Parameters that define systems | and Il investigated

in this study:# is the packing fraction as defined in E4.7); \ is
the o-independent well widthix is the width parameter of the 30 | |
— — t
Schulz distribution{cf. Eq. (38); o is set to unity; e andz are as f(0) e
defined in Eq(42). 20 -
7 A a € z or
System | 0.30 1.25 100 1.0 15 Z:
System || 0.35 1.50 50 0.8 1.0 '1'0 ]
Be -15 -
BA:BAO+BAHTA+IBAORPA’ (35) 20

-25

whereA, is the free energy of the polydisperse hard sphere 35

reference systerf8], and the other two contributions are @ * ) R
a

40

BAHTA:ZWNP% J:odrrzq)l;lm(r)go;lm(r)a (36)

3.0
system Il

f(0) 201

BARFA= — gf[ Cl. (37

In Sec. Ill, we will present results foA®*=A—A;y, where
Ajq is the ideal gas contribution.

. RESULTS
A. Schulz (or T") distribution

We assume that the particle diameters distributed ac- a8 o = -
cording to al’ distribution[28], ) ‘ o '
atl o —(a+1)olo —
fe(o)= atl gt (et 38) FIG. 1. Distribution functionfy(o) (in units 1&r) for the par-
* o I'a+1) ' ticle size of system (a) and system lI(b) for the two different

polydisperse square-well systems considered in this study. The ver-
_ tical lines locate the zeros,., of the orthogonal polynomials
whereo is the mean diameter andis a positive parameter. p,(o) associated with the weight functidg (o) for different val-
TheT distribution is often used to describe polydisperse flu-ues ofn (n=>5: broken linen=8: dotted line;n=10: full line). On
ids; for us it has the further benefit that the orthonormalthe negative ordinate, we pletge;; = — Be(o; ,0;), the parameters
polynomialsp;(o) defined in Eq.(19) for the weight func- of the well depth of the “diagonal” interatomic potential, as a
tion fz(o-) are known exp||c|t|y_they are proportiona| to function of o. For the unlike Case;; andi # j, we have assumed a

the associated Laguerre polynomialé)(x), Berthelot rule, Eq(42).
®, I<oj;
iM(a+1) ™2, o '
pi(O'): m Li (a+1)? . (39) Bq)(r;o-iio-j): — €jj, o-ij<r\)\”-0'ij (41)
0, )\ija-ij <r.

For this distribution the expressions for the packing fractions
introduced above now read Here ¢;; are the parameters for the well depth, angd the

parameters for the range of the well. These quantities allow
us to take into account—independently from each other—
p;3. (40) polydispersity in particle size, interaction strength, and po-
tential range.
In particular, we demonstrate our method for two systems,
denoted | and Il. Their system parameters are compiled in
B. System Table I, and have the following meaning: is the packing

To demonstrate our method, we have chosen a polydidraction as defined in Eq17), while the parameters andz
perse square-well liquid, where the interactions are given bylefine thes dependence of the well depth,

_m —3(a+2)(a+3)
T8l T )2

ol 3
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GiiZE(O'i ,(Ti):€e

Z(Ui_g), EijZE(O'i,O'j):Ee

2(oij— ) values of the critical points of the one-component system,
(212) calculated with the same thermodynamic perturbation

_ theory: (7.~0.28¢,~1.33) for system |, and#.~0.18¢

o being the mean diameter, i.e., the first moment gfo’). ~0.8) for system II.

This simple choice for ther dependence of the well depth  In Fig. 1, we displayfs(o;) ande(o;,0;) as functions of
guaranteesi) that the attraction of the potential increasesg; for both systems investigated. In an effort to study the
with the particle siz§as one might assume intuitive)y(i)  convergence of the expansions of the correlation functions in
that the interactions are additive in the sense of a Berthelaerms of p;(¢), we have chosen three different truncation
rule [29], and(iii) that double integrals oveii(o) (such as levelsn in Egs.(23) and subsequent expressions, namely,
those occurring in the expression fo®) factorize, which =5 8, and 10. The corresponding zerosmf{ o), Oken s
makes the calculation of the thermodynamic propertiek=1,... n, are marked in Fig. 1 as vertical lines with dif-
easier. From basic arguments of probability theory, we finderent symbols.

that the size distributiofis (o), along with thes dependence

of €; [EQ. (42)], induce the following probability distribu-

tion for the well depth: C. Thermodynamic properties
1 For a square-well potential, some of the expressions for
fe(e)= —=——"fy|=In < ) (43  the thermodynamic properties listed in Sec. IID have to be
zeel™29) “|Z |\ ¢ treated with care. While the internal energ§* and the iso-

_ _ o thermal compressibilityy; can be calculated via Eq§32)
The width parameter of the interaction is assumed tarbe and(34) without any problems, the situation for the pressure
independent);; =\ ; as a consequence, the actual well widthexpression is more delicate; the discontinuity both of the
aij\;j increases with the the size of the particles. potential and the PDF at contact and at the well edge bring
To give the reader an idea where these polydisperse sygiong potential problems. These difficulties were already ex-
tems might be localized in the phase diagram of a correamined some time agf80]; following similar lines in the
sponding effective one-component systéharacterized by polydisperse case, for the ORPA we obtain the following
the parameters, o, 7, and\) we present th@pproximate expression:

BP’

2 o 1
=1+ §7TPJO doidof(o)f(o)) ol 9((ayy) o ,O'J')—E?\ﬁﬂfij[g((MjUij)TUi o)+ g((Njjoip) 0,011
(44

where the ‘4" and “ —" superscripts denote the right- and n values are consistent, i.e., it {& principle) possible to
left-side limits, respectively, of the discontinuous function interpolateg(r;o;,o;) andc(r;a;,o;) for the discreter; by
g(r;oj,0;) at the specified values. smooth functiong(r;o,0) andc(r;o,0). The same holds
for the “off-diagonal” correlation functions.
A comparison between the RPA, which violates the core
condition, and the ORPA is presented in FiggPDF's) and
The numerical optimization procedure that finds the mini-3 (DCF's); the influence of the optimization criterion that
mum of the ORPA functional is based on a simple steepesiguarantees that the PDF’s vanish in the core region is obvi-
descent algorithntas described, for instance, in R€L6]).  ous in both functions. On the one hand, the PDF’s are now
The search for the minimum starts from the RPA, where thejefinitely zero inside the core; on the other hand, substantial
square-well potential is simply extrapolated as a constantodifications of the DCF’s that represent the optimized po-
into the core region. Minimization of the algorithm is con- tential inside the core are observed. Furthermore, the influ-
sidered to be satisfactory as soon as ence of increasing well depth is clearly visible asin-
creases; this becomes obvious in the strong modification in
g(r;o,o) as well as in the optimized potentigle., the di-
rect correlation functions inside the core, which corrects the
The optimization procedure turns out to be not too time conunperturbed direct correlation functianp(r;o,o)] as dem-
suming; even fom=10, a satisfactory convergence can beonstrated in Fig. &).
obtained on a Pentium P@33 MH2) in less than 5 min. We also calculate the number-number structure factor
The results for the “diagonal” PDFg(r;o;,0;) and the  S(q),
“diagonal” DCFsc(r;o;,0;) are displayed in Figs. 2-5 for
systems | and Il. In all these figures, we display datarfor
=5. A closer investigation of tha erendence show§ that S(q):1+med0idajf(Ui)f(Uj)ﬁ(q;Ui o). (46)
the results for the correlation functions obtained for different 0

D. Results

ma)ﬁ;jyklh(ri;O'j,O'k)|<1075 fOI’ riE[0,0'ij]. (45)
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0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 2 25 3
s
(a) (@)
40 2
Goreall;0,0,) Coreal’s0,0)
35 |- 1|
30 - ol
system | -1+ system |
n=5 n=5
-2
e Sl
a4t
5L
-0.5
-6
-1.0 -
. . . . . . . -7 y ; * : y
_1'50.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 0 05 1 . 15 2 25 3
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FIG. 2. “Diagonal” pair distribution functiong(r;o;,o;) for
the polydisperse system hE5) as functions of. Labels for the
indexi, i=1,...,5, are shown in the insdia) RPA results.(b)
ORPA results.

FIG. 3. “Diagonal” direct correlation functions(r;a;,0;) for
the polydisperse system hE5) as functions of. Labels for the
indexi, i=1,...,5, are shown in the insdia) RPA results.(b)
ORPA results.

This function is displayed, along with the structure factor g, mmarizing, and in combination with our observations of

So(q) of the reference system, in Figs. 6 and 7 for Systems fne sirycture factor, we may conclude that a truncation level
and Il. These figures make visible the influence of the attracys n=5 or 8 is largely sufficient for reliable numerical re-

tive potential. Results obtained from different truncation lev-
els,n=5, 8, or 10, coincide within line thickness.

Finally, we compare results for the thermodynamic quan- 40
tities U® PY, A% and y; by exploiting the expressions %51
compiled in Secs. IID and Il Galso see Table )l Again,
we consider three different truncation levets<5, 8, or 10,
and also include results for an effective one-component sys-

tem characterized by the set of system parameters, e,
and\. For all these quantities, we find that results for differ-
ent truncation levels differ only by a few percent. Closer
investigationd(i.e., by solving the OZ equations fewery n
value and evaluating the thermodynamic functioseow
that a sequence, such as the valug¥(n), is not monoto-
nous, i.e., the values oscillate. This can be understood by
bearing in mind that the zeras,., do not change continu- ,
ously as one proceeds from onevalue ton— 1. Therefore, 2%0 05 10 15 20 25 30 35 40 45 50
in particular for smallen values, larger differences are ob- 4

served than is the case for larges. In addition it is obvious

that differences in thermodynamic functions become more FIG. 4. “Diagonal” pair distribution functiongy(r;o,o;) for
substantial for different truncation levaisas the distribution  the polydisperse system IhE5) as functions of calculated in the
fs(o) becomes broader, i.e., asdecreasescf. system I). ORPA. Labels for the indek i=1,...,5, are shown in the inset.

sults.

3.0 -
system |l
n=5

v éjnﬁu “1e 18 yoose} .

=15 -
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4.0

c,(r;0,0)

30 7 ™~

system Il

-20

0.0 0.5 1.0 1.5 20 25 3.0

25 3.0

FIG. 5. (a) Perturbation part of the “diagonal” direct correla-
tion functionsc,(r;o; ,0;) for the polydisperse system IhES) as
functions ofr calculated in the ORPA. Labels for the indéexi
=1,...,5, are shown in the insdb) “Diagonal” direct correla-
tion functionsc(r;o;,0;) for the polydisperse system IhE5) as
functions ofrr calculated in the ORPA. Labels for the indéxi
=1,...,5, are shown in the inset.
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90

0.0 5‘.0 16.0
FIG. 7. Number-number structure factors for the polydisperse
system I1[S(q), full line] and the polydisperse hard sphere refer-
ence systemSy(q), broken lind as functions of}. Results obtained
with different truncation levels coincide within the line thickness.

IV. CONCLUSION

This work is concerned with a generalization of the opti-
mized random phase approximatire., a thermodynamic
perturbation theonythat is able to describe the structure and
thermodynamic properties of a polydisperse liquid, where
the size distribution of the particles is given by a probability
distributionfs (o). The method is based on expansions of all
o-dependent functions in terms of the orthonormal polyno-
mials associated with this distribution function. As in the
one-component or théfinite) A~component case, the solu-
tion of this perturbation theory can be formulated as an op-
timization problem of a suitably chosen functional of the
direct correlation functions; minimization of this functional
with respect to variations of the direct correlation functions
inside the inaccessible core region defines the solution of the
ORPA. To demonstrate the method, we have chosen two
polydisperse systems of square-well molecules, assuming a
Schulz distribution for the size of the particles and a Berthe-
lot rule for the well depth. A closer analysis of the numerical
results for the structure and the thermodynamic properties
shows that truncation of the expansion series of the
o-dependent functions after five terms is in general suffi-
cient.

TABLE II. Thermodynamic properties of systems | and Il de-
fined in Table I: excess internal ener@yf”, virial pressureP?,
excess free energi®, and isothermal compressibility;. (See
Secs. IID and Il O. Results are tabulated for series truncation
levelsn=5, 8, and 10, as well as for an effective one-component

system(“ocs” ) defined by parameters, o, €, and\.

BUSIN  BPYp  BA%IN XT
System | n=5 -1.6323 0.4730 -0.3228 0.3862
n=8 —16442 0.4810 -0.3334 0.3878
n=10 -—1.6545 0.4860 -0.3456 0.3896
00, 5 = = <5 =5 00 ocs —-1.6180 0.5730 -0.3709 0.3617
* System I n=5  —-2.7694 1.0491 -15477 0.2066
FIG. 6. Number-number structure factors for the polydisperse =8 —27779 10657 -—-1.5516 0.2063
system I[S(q), full line] and the polydisperse hard sphere reference n=10 —2.7677 1.0436 -—1.5326 0.2073
system Sy(q), broken ling as functions of). Results obtained with ocs —2.7344 1.2862 —1.5512 0.1776

different truncation levels coincide within the line thickness.
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