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Thermodynamic perturbation theory for polydisperse colloidal suspensions
using orthogonal polynomial expansions
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We present a method for calculating the thermodynamic and structural properties of a polydisperse liquid by
means of a thermodynamic perturbation theory: the optimized random phase approximation~ORPA!. The
approach is an extension of a method proposed recently by one of us for an integral equation application@Phys.
Rev. E54, 4411~1996!#. The method is based on expansions of alls-dependent functions in the orthogonal
polynomialspi(s) associated with the weight functionf S(s), wheres is a random variable~in our case the
size of the particles! with distribution f S(s). As in the one-component or generalN-component case, one can
show that the solution of the ORPA is equivalent to the minimization of a suitably chosen functional with
respect to variations of the direct correlation functions. To illustrate the method, we study a polydisperse
system of square-well particles; extension to other hard-core or soft-core systems is straightforward.
@S1063-651X~99!06806-3#

PACS number~s!: 82.70.Dd, 02.70.2c, 61.20.Gy, 61.25.Em
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I. INTRODUCTION

Colloidal suspensions consist of mesoscopic partic
~with mean diameters typically from 1mm to 1 nm! that are
dispersed in a suspending microscopic fluid. On the
hand, the fact that such colloids are practically ubiquitous
our everyday lives~ranging from industrial products such a
paints, glues, or lubricants to basics such as foods or p
maceuticals! is one reason why increasing attention has b
dedicated to these systems.~For an overview see, for in
stance, Ref.@1#.! On the other hand, for a liquid state phys
cist such systems are very attractive in that they repre
mesoscopic realizations of simple atomic liquids. Surpris
analogies between the statistical behavior of such syst
and that of simple atomic fluids can be observed, and
some cases analogous experiments can be carried out
more easily for colloids than for atomic systems. To descr
these suspensions, one usually integrates out~at least con-
ceptually! the molecular degrees of freedom of the suspe
ing fluid, and employs effective potentials acting directly b
tween the mesoscopic particles that are rather simple: a h
repulsion at short distances followed by attraction at lar
distances. In some cases, these interactions can even b
lored by suitable production techniques, while in atomic l
uids one is simply stuck with the interaction dictated by t
electronic structure.

These appealing features of colloidal suspensions
countered by~at least! one major drawback which make
their theoretical investigation rather complicated: due to th
production process the colloidal particles are inherently po
disperse in size~and consequently also in their interaction!.
A polydisperse liquid can be considered as a mixture with
infinite number of components, characterized, for instan
by sizes, which is now a continuous rather than a discre
variable. The first attempts to treat such systems date bac
PRE 591063-651X/99/59~6!/6937~9!/$15.00
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the late 1970s@2,3#, when a model of polydisperse har
spheres was investigated within the Percus-Yevick appr
mation. In later years the concept of polydispersity was c
in a mathematically rigorous form by Salacuse and Stell@4#
and by Briano and Glandt@5#. In these formulations,s is the
realization of some random variableS distributed according
to a probability distributionf S(s), which replaces the finite
set of concentrations of the discrete components of a m
ture. Meanwhile, the formalism has been extended syst
atically to more refined and more sophisticated hard-c
model systems@6–9#. The first step toward numerically solv
ing such general~i.e., continuous! systems was carried ou
by D’Aguanno and Klein@10#, who applied well-known in-
tegral equation approaches of liquid state theory to the p
disperse case. This was achieved by replacing the continu
distribution f S(s) with a histogram for a finite set ofn well-
chosen diameters, thus mapping the polydisperse sys
back onto ann-component mixture.

Recently this approach was modified by one of us
joining the orthogonal polynomial expansion technique w
classical liquid state integral equation theory@11#. In this
procedure, alls-dependent functions~in particular, the cor-
relation functions! are expanded in terms of orthogonal pol
nomials pi(s) associated with the weight functionf S(s).
This expansion technique avoids the rapid increase in c
putational cost with number of componentsn in the
D’Aguanno-Klein mixtures method, while fully retaining th
advantages and numerical accuracy of Gaussian quadr
based on the weight functionf S(s). The same technique ca
further be applied to a much wider range of problems dea
with internal and external degrees of freedom in fluid s
tems@12,13#.

In the present work, we have merged the orthogonal po
nomial expansion method with a thermodynamic pertur
tion theory, the optimized random phase approximat
6937 ©1999 The American Physical Society
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6938 PRE 59SABINE LEROCH, GERHARD KAHL, AND FRED LADO
~ORPA!. The ORPA was introduced in the 1970s@14,15#,
and turned out to be a very successful liquid state the
favored by practitioners over a considerable period of ti
until—because of new, more efficient numeric
algorithms—it was overtaken by integral equations in
1980s. In the ORPA, the pair potential is split into a hars
repulsive reference term~the optimum choice is of course
hard sphere interaction! and a perturbation term; th
Ornstein-Zernike equations are then solved along with
mean-spherical-type closure relation which guarantees in
dition that the pair distribution function vanishes in the r
gion that is not accessible due to the strong repulsion~‘‘core
region’’!. It can be shown that the solution of the resulti
integral equation is equivalent to the minimization proble
of a suitably chosen functional of the direct correlation fun
tion. This functional makes the ORPA very attractive, sin
it is sometimes more convenient~and numerically more
stable! to solve the minimization problem than to solve
integral equation. Thermodynamic and structural proper
are calculated via perturbation expressions. In recent yea
due in particular to the work of Pastore and co-work
@16,17#—the ORPA has been rediscovered: new numer
tools and the rapid development of computers have brou
this liquid state method back into the race. Preliminary c
culations for simple square-well systems have shown tha
some cases the ORPA can in fact be applied over a la
range of system parameters than integral equation
proaches@18#. In addition, the ORPA shows a remarkab
degree of thermodynamic consistencywithout the necessity
of introducing an additional parameter, as required in ap
cations of parametrized integral equation theories that
force some thermodynamic consistency.

We demonstrate here that one can merge the ORPA
the method of orthogonal polynomial expansions. As
sample application, we have chosen a polydisperse syste
square-well molecules. This is a rather simple system wh
nevertheless captures all the essential features of a ty
potential of atomic liquids or colloidal suspensions. In th
formulation, the potential parameters of the polydisperse s
tem ~hard-core diameters, well width l, and well depthe)
can be varied independently; i.e., they can be distributed
cording to three independent distribution functionsf S(s),
f L(s), and f E(s).

Finally we note some very recent work on polydispe
system where contributions of higher-order moments of
distribution function to the free energy are systematica
taken into account@19,20#. At present it is not clear if some
relation between this moment-expansion and our expan
in orthogonal polynomials can be established; this might
part of future work.

The paper is organized as follows. In Sec. II, we pres
the basic concept of the ORPA for the case of a disc
N-component system~with finite N) as well as for the case
of a continuous polydisperse system, introducing orthogo
polynomial expansions for the latter. General expressions
the structural and thermodynamic properties are given h
In Sec. III, we apply this approach to a polydisperse squa
well liquid, and discuss the influence of the numerical p
rameters and of the size distribution functions. The pa
concludes with a summary of our findings in Sec. IV.
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II. THEORY

A. System

We first consider anN-component mixture of simple liq-
uids that is characterized by a temperatureT @b5(kBT)21#,
a number densityr, and a set of concentrationsci , and de-
fine the partial number densitiesr i5rci . We furthermore
assume that every speciesi is characterized by some diam
eter s i , and that the pair potentialF(r ;s i ,s j ) acting be-
tween particles of speciesi and j can be split up into a re-
pulsive reference partF0(r ;s i ,s j ) and a perturbation par
F1(r ;s i ,s j ):

F~r ;s i ,s j !5F0~r ;s i ,s j !1F1~r ;s i ,s j !. ~1!

We can assume that the reference potentials are hard sp
potentials, characterized by an additive set of diameterss i ,
and put

s i j 5
1
2 ~s i1s j !. ~2!

If the F0(r ;s i ,s j ) are soft potentials, we can replace the
by suitably chosen hard sphere potentials using a straigh
ward generalization of the Barker-Henderson@21# or the
Weeks-Chandler-Andersen@15,22# prescription for the deter-
mination of the diameters; of course, in such a case the c
terms in the interactions must be forced to be additive.
will characterize our systems via the packing fractionh, de-
fined as

h5
p

6 (
i 51

N

r is i
3 . ~3!

In our approach, we exploit the fact that the thermodynam
and structural properties of the hard sphere reference po
tial are well known, either as the~thermodynamically incon-
sistent! analytic Percus-Yevick solution@23# or as semi-
empirical Verlet-Weis-type extensions@24–26# which very
accurately parametrize computer experiments.

B. Optimized random phase approximation
for the N-component case

We start from the Ornstein-Zernike~OZ! equation

h~r ;s i ,s j !5c~r ;s i ,s j !1 (
k51

N

rkE dr 8 c~r 8;s i ,sk!

3h~ ur2r 8u;sk ,s j !, ~4!

where c(r ;s i ,s j ) and h(r ;s i ,s j ) are the direct and tota
correlation functions, respectively. We follow Blum an
Stell @3# and introduce

H~r ;s i ,s j !5Ar ir jh~r ;s i ,s j !,
~5!

C~r ;s i ,s j !5Ar ir j c~r ;s i ,s j !.

Fourier transforms are denoted by a tilde; introducing ma
notation, @C(r )# i j 5C(r ;s i ,s j ), etc., we arrive at the fol-
lowing OZ matrix equation inq space:

H̃~q!5C̃~q!1C̃~q!H̃~q!. ~6!
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PRE 59 6939THERMODYNAMIC PERTURBATION THEORY FOR . . .
Just as for the potentials, we now split the correlation fu
tions H(r ) andC(r ) into reference and perturbation parts

C~r !5C0~r !1C1~r !, H~r !5H0~r !1H1~r !. ~7!

Since$C(r ),H(r )% and$C0(r ),H0(r )% satisfy OZ relations,
we arrive—after some matrix algebra—at the so-called
sidual OZ relation

H̃1~q!5$@S0~q!#212C̃1~q!%21C̃1~q!S0~q!, ~8!

where we have introduced the matrix of structure factors
the reference system,

S0~q!511H̃0~q!, ~9!

with 1 the unit matrix.
To solve the OZ equations a closure relation is needed

the random phase approximation~RPA!, one assumes tha
the long-range behavior of the direct correlation functio
~DCF’s! holds forall distances outside the core region,

c~r ;s i ,s j !5c0~r ;s i ,s j !2bF1~r ;s i ,s j !, ~10!

or equivalently,

c1~r ;s i ,s j !52bF1~r ;s i ,s j !, r .s i j . ~11!

Due to the infinite repulsion of the reference potential, th
is some ambiguity for the definition ofF1(r ;s i ,s j ) inside
the core. One possibility is to assume that the perturba
potential is continued steadily. Solution of the RPA closu
along with the OZ relation then leads, however, to pair d
tribution functions @PDF’s, g(r ;s i ,s j )5h(r ;s i ,s j )11]
that violate the core conditions, i.e.,

g~r ;s i ,s j !Þ0 for r ,s i j . ~12!

The optimized version of the RPA, ORPA, corrects this d
ficiency by modifyingc1(r ;s i ,s j ) inside the core, where th
perturbation potential~and hence the perturbation part of th
DCF’s! can be changed arbitrarily. The modifications a
then done in such a way as to guarantee that the core co
tion for the PDF’s is fulfilled. Hence the ORPA closure r
lations now read

c~r ;s i ,s j !52bF1~r ;s i ,s j !, r .s i j

~13!
g~r ;s i ,s j !50, r ,s i j .

Similarly to the one-component case, one can show
the solution of the integral equation along with the ORP
closure is equivalent to minimization of a functionalF@C# of
the direct correlation functions. Defining

F@C#5
1

2~2p!3E dq $Tr@C̃1~q!S0~q!#

1 ln@det„12C̃1~q!S0~q!…#%, ~14!

where Tr denotes the trace of a matrix, one can show th

dF@C#

dC1~r ;s1 ,s j !
52

1

2
H1~r ;s i ,s j ! for r ,s i j . ~15!
-
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This means that the search for the minimum of the functio
F@C# with respect to variations of theC1(r ;s i ,s j ) inside
the core region is equivalent to satisfying the core condit
for the PDF’s. By extending a proof by Pastoreet al. @16# to
theN-component case, one may show that, if such a m
mum has been found, it is the only one and the physica
sound one.

C. Optimized random-phase approximation
for the polydisperse case

The formalism developed above can now be easily gen
alized to the polydisperse case. The concept of polydisp
systems was introduced in the late 1970s for simple h
spheres@3,27#, and extended in subsequent years to m
complex interaction models~see the Introduction of Ref
@11#!. Later, the treatment of polydispersity was cast in
rigorous form by Salacuse and Stell@4# and Briano and
Glandt @5#. In a polydisperse system~which may be viewed
as a mixture with an infinite number of components!, the
particles are characterized by a parameters which is the
realization of a random variableS. This random variable is
distributed according to some probability distributionf S(s),
which now replaces the set of concentrations of the com
nents. In our case~as in many other applications!, the ran-
dom variable is of course the diameter of the particles. In
following we will set f S(s)5 f (s) for convenience and re
introduce the index ‘‘S ’’ later.

The OZ equation now reads

h~r 12;s1 ,s2!5c~r 12;s1 ,s2!1rE
0

`

ds3f ~s3!

3E dr3c~r 13;s1 ,s3!h~r 32;s3 ,s2!,

~16!

and the packing fractionh is given by the third moment o
the distributionf (s),

h5
p

6
rE

0

`

ds f ~s!s35
p

6
rs 3̄. ~17!

Note that in some papers a slightly different definition of t
packing fraction is used, e.g.@4#,

h̄5
p

6
rs̄3, s̄5E

0

`

ds f ~s!s. ~18!

Instead of evaluating integrals over the distribution fun
tion f (s) by Gaussian quadrature, as proposed
D’Aguanno and Klein@10#, we expand alls-dependent func-
tions in terms of the orthonormal polynomialspi(s), i
50,1,2 . . . , associated with the distribution functionf (s),
which now plays the role of a weight function,

E
0

`

ds f ~s!pi~s!pj~s!5d i j . ~19!

For some choices off (s), such as the Schulz~or G) distri-
bution used below,pi(s) are known explicitly. In other
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cases, these polynomials must be constructed; this ca
done using the Gram-Schmidt algorithm, starting fro
p0(s)51.

Given now somes-dependent functionsx(r ;s) and
y(r ;s1 ,s2), their expansions read

x~r ;s!5(
j 50

`

xj~r !pj~s!,

~20!

y~r ;s1 ,s2!5 (
i , j 50

`

yi j ~r !pi~s1!pj~s2!,

where the coefficients are given by

xi~r !5E
0

`

ds f ~s!x~r ;s!pi~s!, ~21!

yi j ~r !5E
0

`

ds1ds2 f ~s1! f ~s2!y~r ;s1 ,s2!pi~s1!pj~s2!.

~22!

Of course, in numerical applications these infinite sums
integrations must be converted to finite versions. For the
tegrations, it is most convenient to use Gaussian quadra
Let sk;n (k51, . . . ,n) be then roots of pn(s), and z(s)
some arbitrarys-dependent function; then

E
0

`

ds f ~s!z~s!'(
k51

n

wkz~sk;n!, ~23!

where the weightswk are given by

wk5
1

(
j 50

n21

pj
2~sk;n!

. ~24!

With these ingredients, we obtain the numerical~approxi-
mate! versions of the equations above:

x~r ;sk;n!' (
j 50

n21

xj~r !pj~sk;n!,

~25!

y~r ;sk;n ,sm;n!' (
i , j 50

n21

yi j ~r !pi~sk;n!pj~sm;n!,

where the coefficients are given by

xi~r !'(
k51

n

wkx~r ;sk;n!pi~sk;n!,

~26!

yi j ~r !' (
k,m51

n

wkwmy~r ;sk;n ,sm;n!pi~sk;n!pj~sm;n!.

Denoting the expansion coefficients for the orthogonal po
nomial expansions of the direct and total correlation fu
tions c(r ;s i ,s j ) and h(r ;s i ,s j ) by ci j (r ) and hi j (r ) ~and
similarly for their Fourier transforms, with an addition
be

d
-

re.

-
-

tilde! and collecting them as matricesC andH, we find that
in terms of these coefficient functions the OZ equations~6!
now read

H̃~q!5C̃~q!1rH̃~q!C̃~q!. ~27!

Here, C and H are n3n matrices, wheren is the ~chosen!
parameter of discretization; the actual values forn required
for a sufficient level of accuracy are discussed below. In
similar way, we can decompose the static structure fac
S(q;s i ,s j ) of the reference system in terms of the orthon
mal polynomials, leading to a matrixS0(q) that is related to
the hard sphere PDF matrixH̃0(q) via

S0~q!511rH̃0~q!. ~28!

Developing the concept of the ORPA along lines para
to those outlined above for theN-component case, we find
that the residual OZ equation~8! now reads

H̃1~q!5$@S0~q!#212rC̃1~q!%21C̃1~q!S0~q!. ~29!

Again, it can be shown that the solution of the residual O
relation along with the ORPA closure are equivalent to mi
mizing a suitably chosen functional. In terms of theC andS0
matrices, the functional and its functional derivative wi
respect to the coefficientsC1;i j (r ) are, respectively,

F@C#5
1

2~2p!3E dq $Tr@rC̃1~q!S0~q!#

1 ln@det„12rC̃1~q!S0~q!…#% ~30!

and

dF@C#

dc1;i j ~r !
52

1

2
r2h1;i j ~r ! for r ,s i j . ~31!

D. Thermodynamics

Once the structure is found, the thermodynamic proper
can easily be calculated. In the following, the expressio
presented in Ref.@11# are complemented by some addition
relations which can be derived specifically in the framewo
of the ORPA.

For the ~excess! internal energyUex, the virial pressure
Pv, and the isothermal compressibilityxT , we thus obtain

bUex

N
52pbr(

l ,m
E

0

`

dr r 2F1;lm~r !glm~r !, ~32!

bPv

r
512

2

3
pbr(

l ,m
E

0

`

dr r 3
dF lm~r !

dr
glm~r !, ~33!

1

rkBTxT
5S ]bPc

]r D
T

512r c̃00~q50!, ~34!

whereN is the total number of particles of all species. Fu
ther, within the ORPA and using the coupling constant f
malism@11#, for the Helmholtz free energyA one can derive
the expression
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bA5bA01bAHTA1bAORPA, ~35!

whereA0 is the free energy of the polydisperse hard sph
reference system@3#, and the other two contributions are

bAHTA52pNr(
l ,m

E
0

`

dr r 2F1;lm~r !g0;lm~r !, ~36!

bAORPA52
N

r
F@C#. ~37!

In Sec. III, we will present results forAex5A2Aid , where
Aid is the ideal gas contribution.

III. RESULTS

A. Schulz „or G… distribution

We assume that the particle diameters is distributed ac-
cording to aG distribution @28#,

f S~s!5S a11

s̄
D a11

sae2(a11)s/s̄

G~a11!
, ~38!

wheres̄ is the mean diameter anda is a positive parameter
TheG distribution is often used to describe polydisperse fl
ids; for us it has the further benefit that the orthonorm
polynomialspi(s) defined in Eq.~19! for the weight func-
tion f S(s) are known explicitly—they are proportional t
the associated Laguerre polynomialsLi

(a)(x),

pi~s!5F i !G~a11!

G~ i 1a11!G
1/2

Li
(a)S ~a11!

s

s̄
D . ~39!

For this distribution the expressions for the packing fractio
introduced above now read

h5
p

6
rs̄3

~a12!~a13!

~a11!2
, h̄5

p

6
rs̄3. ~40!

B. System

To demonstrate our method, we have chosen a poly
perse square-well liquid, where the interactions are given

TABLE I. Parameters that define systems I and II investiga
in this study:h is the packing fraction as defined in Eq.~17!; l is
the s-independent well width;a is the width parameter of the

Schulz distribution@cf. Eq. ~38!; s̄ is set to unity#; ē andz are as
defined in Eq.~42!.

h l a ē z

System I 0.30 1.25 100 1.0 1.5
System II 0.35 1.50 50 0.8 1.0
e

-
l

s

s-
y

bF~r ;s i ,s j !5H `, r<s i j

2e i j , s i j ,r<l i j s i j

0, l i j s i j ,r .
~41!

Here e i j are the parameters for the well depth, andl i j the
parameters for the range of the well. These quantities allo
us to take into account—independently from each other
polydispersity in particle size, interaction strength, and p
tential range.

In particular, we demonstrate our method for two system
denoted I and II. Their system parameters are compiled
Table I, and have the following meaning:h is the packing
fraction as defined in Eq.~17!, while the parametersē andz
define thes dependence of the well depth,

FIG. 1. Distribution functionf S(s) ~in units 1/s̄) for the par-
ticle size of system I~a! and system II~b! for the two different
polydisperse square-well systems considered in this study. The v
tical lines locate the zerossk;n of the orthogonal polynomials
pn(s) associated with the weight functionf S(s) for different val-
ues ofn (n55: broken line;n58: dotted line;n510: full line!. On
the negative ordinate, we plot2be i i 52be(s i ,s i), the parameters
of the well depth of the ‘‘diagonal’’ interatomic potential, as a
function ofs. For the unlike case,e i j andiÞ j , we have assumed a
Berthelot rule, Eq.~42!.

d
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e i i 5e~s i ,s i !5 ēez(s i2s̄), e i j 5e~s i ,s j !5 ēez(s i j 2s̄),
~42!

s̄ being the mean diameter, i.e., the first moment off S(s).
This simple choice for thes dependence of the well dept
guarantees~i! that the attraction of the potential increas
with the particle size~as one might assume intuitively!, ~ii !
that the interactions are additive in the sense of a Berth
rule @29#, and ~iii ! that double integrals overf (s) ~such as
those occurring in the expression forUex) factorize, which
makes the calculation of the thermodynamic proper
easier. From basic arguments of probability theory, we fi
that the size distributionf S(s), along with thes dependence
of e i j @Eq. ~42!#, induce the following probability distribu-
tion for the well depth:

f E~e!5
1

zēe(2zs̄)
f SF1

z
lnS e

ē
D G . ~43!

The width parameter of the interaction is assumed to bs
independent,l i j 5l; as a consequence, the actual well wid
s i j l i j increases with the the size of the particles.

To give the reader an idea where these polydisperse
tems might be localized in the phase diagram of a co
sponding effective one-component system~characterized by
the parametersh, s̄, h̄, andl) we present theapproximate
d
on

ni
es

th
ta
n-

on
be

r
r
t
n

ot

s
d

s-
-

values of the critical points of the one-component syste
calculated with the same thermodynamic perturbat
theory: (hc;0.28,ēc;1.33) for system I, and (hc;0.18,ēc
;0.8) for system II.

In Fig. 1, we displayf S(s i) ande(s i ,s i) as functions of
s i for both systems investigated. In an effort to study t
convergence of the expansions of the correlation function
terms of pi(s), we have chosen three different truncatio
levelsn in Eqs.~23! and subsequent expressions, namelyn
55, 8, and 10. The corresponding zeros ofpn(s), sk;n ,
k51, . . . ,n, are marked in Fig. 1 as vertical lines with di
ferent symbols.

C. Thermodynamic properties

For a square-well potential, some of the expressions
the thermodynamic properties listed in Sec. II D have to
treated with care. While the internal energyUex and the iso-
thermal compressibilityxT can be calculated via Eqs.~32!
and~34! without any problems, the situation for the pressu
expression is more delicate; the discontinuity both of
potential and the PDF at contact and at the well edge b
along potential problems. These difficulties were already
amined some time ago@30#; following similar lines in the
polydisperse case, for the ORPA we obtain the followi
expression:
bPv

r
511

2

3
prE

0

`

ds ids j f ~s i ! f ~s j !s i j
3 H g„~s i j !

1;s i ,s j…2
1

2
l i j

3 be i j @g„~l i j s i j !
2;s i ,s j…1g„~l i j s i j !

1;s i ,s j…#J ,

~44!
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t
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n in
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tor
where the ‘‘1’’ and ‘‘ 2 ’’ superscripts denote the right- an
left-side limits, respectively, of the discontinuous functi
g(r ;s i ,s j ) at the specifiedr values.

D. Results

The numerical optimization procedure that finds the mi
mum of the ORPA functional is based on a simple steep
descent algorithm~as described, for instance, in Ref.@16#!.
The search for the minimum starts from the RPA, where
square-well potential is simply extrapolated as a cons
into the core region. Minimization of the algorithm is co
sidered to be satisfactory as soon as

maxi ; j ,kuh~r i ;s j ,sk!u,1025 for r ie@0,s i j #. ~45!

The optimization procedure turns out to be not too time c
suming; even forn510, a satisfactory convergence can
obtained on a Pentium PC~233 MHz! in less than 5 min.

The results for the ‘‘diagonal’’ PDFsg(r ;s i ,s i) and the
‘‘diagonal’’ DCFs c(r ;s i ,s i) are displayed in Figs. 2–5 fo
systems I and II. In all these figures, we display data fon
55. A closer investigation of then dependence shows tha
the results for the correlation functions obtained for differe
-
t-

e
nt

-

t

n values are consistent, i.e., it is~in principle! possible to
interpolateg(r ;s i ,s i) andc(r ;s i ,s i) for the discretes i by
smooth functionsg(r ;s,s) and c(r ;s,s). The same holds
for the ‘‘off-diagonal’’ correlation functions.

A comparison between the RPA, which violates the co
condition, and the ORPA is presented in Figs. 2~PDF’s! and
3 ~DCF’s!; the influence of the optimization criterion tha
guarantees that the PDF’s vanish in the core region is o
ous in both functions. On the one hand, the PDF’s are n
definitely zero inside the core; on the other hand, substan
modifications of the DCF’s that represent the optimized p
tential inside the core are observed. Furthermore, the in
ence of increasing well depth is clearly visible ass in-
creases; this becomes obvious in the strong modificatio
g(r ;s,s) as well as in the optimized potential@i.e., the di-
rect correlation functions inside the core, which corrects
unperturbed direct correlation functionc0(r ;s,s)# as dem-
onstrated in Fig. 5~a!.

We also calculate the number-number structure fac
S(q),

S~q!511rE
0

`

ds ids j f ~s i ! f ~s j !h̃~q;s i ,s j !. ~46!
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This function is displayed, along with the structure fac
S0(q) of the reference system, in Figs. 6 and 7 for system
and II. These figures make visible the influence of the attr
tive potential. Results obtained from different truncation le
els,n55, 8, or 10, coincide within line thickness.

Finally, we compare results for the thermodynamic qu
tities Uex, Pv, Aex, and xT by exploiting the expression
compiled in Secs. II D and III C~also see Table II!. Again,
we consider three different truncation levels (n55, 8, or 10!,
and also include results for an effective one-component
tem characterized by the set of system parametersh, s̄, ē,
andl. For all these quantities, we find that results for diffe
ent truncation levels differ only by a few percent. Clos
investigations~i.e., by solving the OZ equations forevery n
value and evaluating the thermodynamic functions! show
that a sequence, such as the valuesUex(n), is not monoto-
nous, i.e., the values oscillate. This can be understood
bearing in mind that the zerossk;n do not change continu
ously as one proceeds from onen value ton21. Therefore,
in particular for smallern values, larger differences are ob
served than is the case for largern’s. In addition it is obvious
that differences in thermodynamic functions become m
substantial for different truncation levelsn as the distribution
f S(s) becomes broader, i.e., asa decreases~cf. system II!.

FIG. 2. ‘‘Diagonal’’ pair distribution functionsg(r ;s i ,s i) for
the polydisperse system I (n55) as functions ofr. Labels for the
index i, i 51, . . . ,5, are shown in the inset.~a! RPA results.~b!
ORPA results.
r
I

c-
-

-

s-

r

by

e

Summarizing, and in combination with our observations
the structure factor, we may conclude that a truncation le
of n55 or 8 is largely sufficient for reliable numerical re
sults.

FIG. 3. ‘‘Diagonal’’ direct correlation functionsc(r ;s i ,s i) for
the polydisperse system I (n55) as functions ofr. Labels for the
index i, i 51, . . . ,5, are shown in the inset.~a! RPA results.~b!
ORPA results.

FIG. 4. ‘‘Diagonal’’ pair distribution functionsg(r ;s i ,s i) for
the polydisperse system II (n55) as functions ofr calculated in the
ORPA. Labels for the indexi, i 51, . . . ,5, are shown in the inset
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FIG. 5. ~a! Perturbation part of the ‘‘diagonal’’ direct correla
tion functionsc1(r ;s i ,s i) for the polydisperse system II (n55) as
functions of r calculated in the ORPA. Labels for the indexi, i
51, . . . ,5, are shown in the inset.~b! ‘‘Diagonal’’ direct correla-
tion functionsc(r ;s i ,s i) for the polydisperse system II (n55) as
functions of r calculated in the ORPA. Labels for the indexi, i
51, . . . ,5, are shown in the inset.

FIG. 6. Number-number structure factors for the polydispe
system I@S(q), full line# and the polydisperse hard sphere referen
system@S0(q), broken line# as functions ofq. Results obtained with
different truncation levelsn coincide within the line thickness.
IV. CONCLUSION

This work is concerned with a generalization of the op
mized random phase approximation~i.e., a thermodynamic
perturbation theory! that is able to describe the structure a
thermodynamic properties of a polydisperse liquid, whe
the size distribution of the particles is given by a probabil
distribution f S(s). The method is based on expansions of
s-dependent functions in terms of the orthonormal polyn
mials associated with this distribution function. As in th
one-component or the~finite! N-component case, the solu
tion of this perturbation theory can be formulated as an
timization problem of a suitably chosen functional of th
direct correlation functions; minimization of this function
with respect to variations of the direct correlation functio
inside the inaccessible core region defines the solution of
ORPA. To demonstrate the method, we have chosen
polydisperse systems of square-well molecules, assumin
Schulz distribution for the size of the particles and a Bert
lot rule for the well depth. A closer analysis of the numeric
results for the structure and the thermodynamic proper
shows that truncation of the expansion series of
s-dependent functions after five terms is in general su
cient.

e
e

FIG. 7. Number-number structure factors for the polydispe
system II@S(q), full line# and the polydisperse hard sphere refe
ence system@S0(q), broken line# as functions ofq. Results obtained
with different truncation levelsn coincide within the line thickness

TABLE II. Thermodynamic properties of systems I and II d
fined in Table I: excess internal energyUex, virial pressurePv,
excess free energyAex, and isothermal compressibilityxT . ~See
Secs. II D and III C.! Results are tabulated for series truncati
levels n55, 8, and 10, as well as for an effective one-compon

system~‘‘ocs’’ ! defined by parametersh, s̄, ē, andl.

bUex/N bPv/r bAex/N xT

System I n55 21.6323 0.4730 20.3228 0.3862
n58 21.6442 0.4810 20.3334 0.3878
n510 21.6545 0.4860 20.3456 0.3896

ocs 21.6180 0.5730 20.3709 0.3617

System II n55 22.7694 1.0491 21.5477 0.2066
n58 22.7779 1.0657 21.5516 0.2063
n510 22.7677 1.0436 21.5326 0.2073

ocs 22.7344 1.2862 21.5512 0.1776
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